

La qualità dell'acqua e i servizi ecosistemici nei canali di bonifica del Progetto Life Green4Blue

Chiara Poesio₁, Mauro De Feudis₁, Gloria Falsone₁, Andrea Morsolin₂, Anna Angheben₂, Michele Solmi₂, Livia Vittori Antisari₁

₁ Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum – Università di Bologna

₂ Consorzio della Bonifica Renana

Le pianure alluvionali

Da tempo soggette ad opere di bonifica: testimoni sono la fitta rete di canali artificiali, le importanti arginature dei fiumi, le casse di espansione e gli sbarramenti

EQUILIBRIO UOMO - ECOSISTEMA ALLUVIONALE VULNERABILE

1

Sicurezza idraulica

Uso promiscuo dei canali

Perdita di biodiversità

Uso agricolo, urbano e industriale dei suoli Frammentazione delle aree umide

Fenomeni di contaminazione

Impatto attività antropiche

> Servizi ecosistemici dei canali

Progetto Life Green4Blue

> Obiettivo

Riqualificazione ambientale dei canali per potenziare la loro funzione di corridoi ecologici

> Azione

Rimodellare morfologia dei canali in nove aree per creare delle aree di appoggio (stepping stones) intermedie tra alcuni siti di Rete Natura 2000 presenti sul territorio

https://www.lifegreen4blue.eu/il-programma-life/

Scopo del lavoro

Valutare la qualità dell'acqua nei nove siti d'intervento del progetto

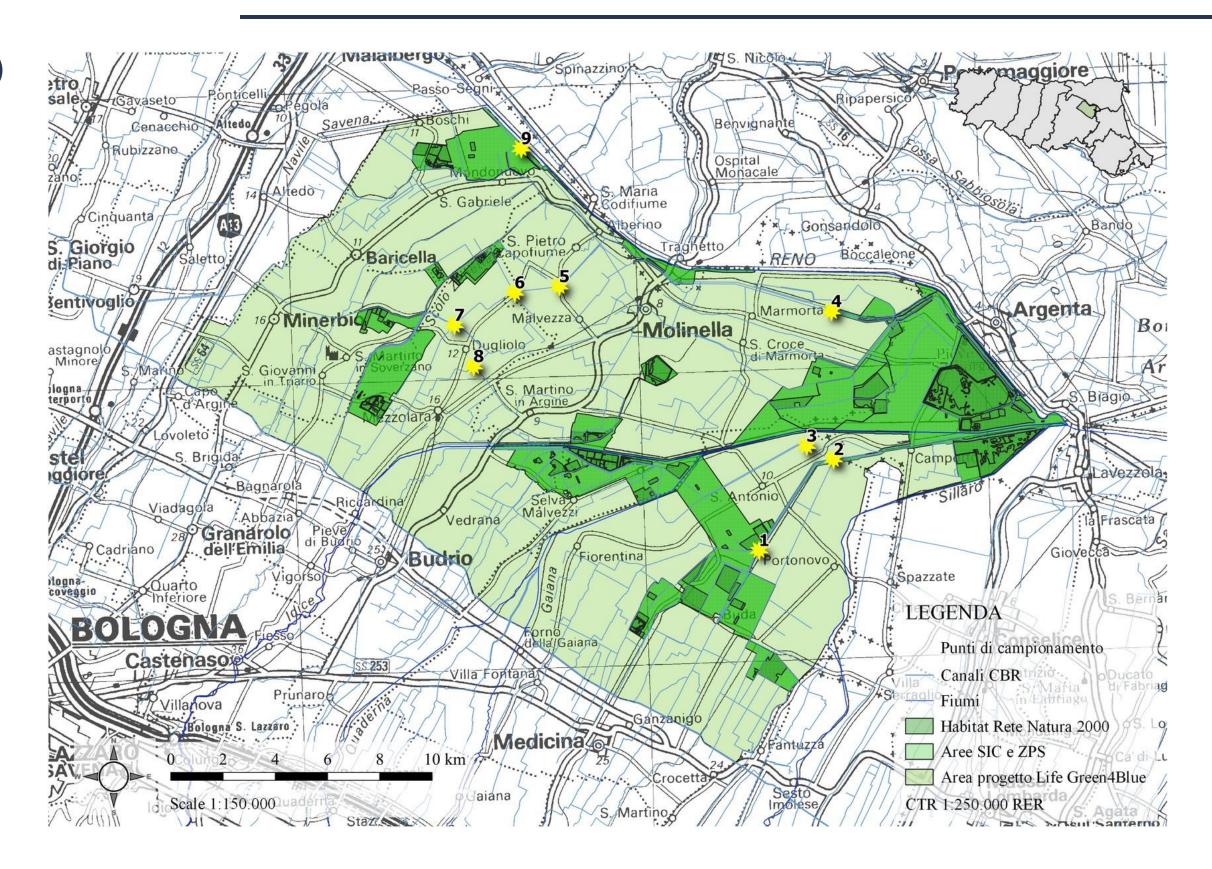
Area di studio

Sito 1 Canale Garda basso

Sito 2 Canale Sesto basso

Sito 3 Canale Sesto basso

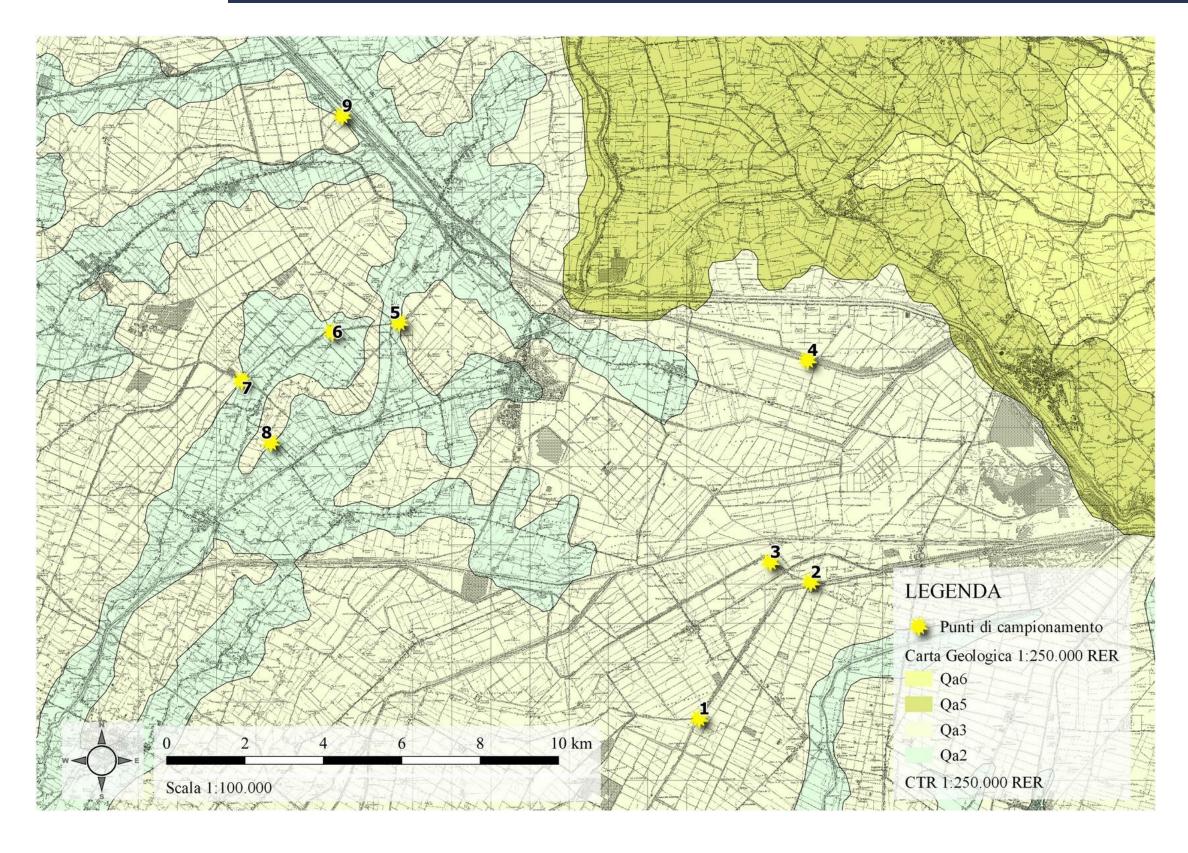
Sito 4 Canale Lorgana


Sito 5 Canale Allacciante IV Circondario

Sito 6 Canale Allacciante IV Circondario

Sito 7 Allacciante - Gallina superiore

Sito 8 Canale Gallina superiore


Sito 9 Canale Della Botte

Area di studio

Qa: Quaternary (post-"Villafranchian") continental and coastal deposits

- 2 : Alluvial plain deposits
 - > depositi di rotta fluviale, creano piccole dorsali
- 3 : Alluvial plain deposits
 - depositi di piana inondabile,corrispondono alle vecchie valli
- 5 : Internal delta plain deposits
- 6 : Internal delta plain deposits

Campionamenti

Analisi parametri chimico-fisici

Parametri	Metodologie acque	Metodologie sedimenti
pH	Elettrodo Crison (pH-metro, Crison, Germania)	Sospensione con acqua distillata (suolo:acqua = 1:2,5), agitazione per 2 ore e lettura del pH con elettrodo Crison
Conducibilità elettrica (CE)	Conduttimetro CDM210 MeterLab	(pH-metro, Crison, Germania) e della CE con conduttimetro CDM210 MeterLab
Ossigeno disciolto (OD)	Elettrodo Hack-Lange	-
Carbonati totali (CaCO₃)	-	Metodo volumetrico (ISO 10693) (Loeppert e Suarez 1996)
Tessitura	-	Metodo della pipetta, previa dispersione del campione in sodio esametafosfato (Gee and Bauder 1986)
Carbonio organico totale (TOC) e azoto totale (TN)	Analizzatore TOC - V CPN (Shimadzu, Giappone)	Dissoluzione dei carbonati con HCI 2 M e lettura con analizzatore elementare CHN (EA 1110 Thermo Fisher, USA)
Azoto nitrico (N-NO ₃ -) e azoto ammoniacale (N-NH ₄ +)	Sprettrofotometria con il colorimetro a flusso continuo (Autoanalyser AA3, Bran Luebbe, Germania)	-
Macro e microelementi totali	Spettrometria ottica ad emissione (ICP- OES, Spectro Ametek, Arcos e Spectro Ciros CCD, Germania)	Estrazione in aqua regia (Vittori Antisari et al. 2014) e lettura con spettrometria ottica ad emissione (ICP-OES, Spectro Ametek, Arcos e Spectro Ciros CCD, Germania)

Indici qualità dell'acqua

1

Water Quality Index (WQI)

2

Sodium Adsorption Ratio (SAR)

3

Eutrophication Index (EI)

$$WQI = \frac{\sum C_i \times p_i}{\sum p_i}$$

 $SAR = \frac{|Na|}{\sqrt{|Ca| + |Mg|}}$

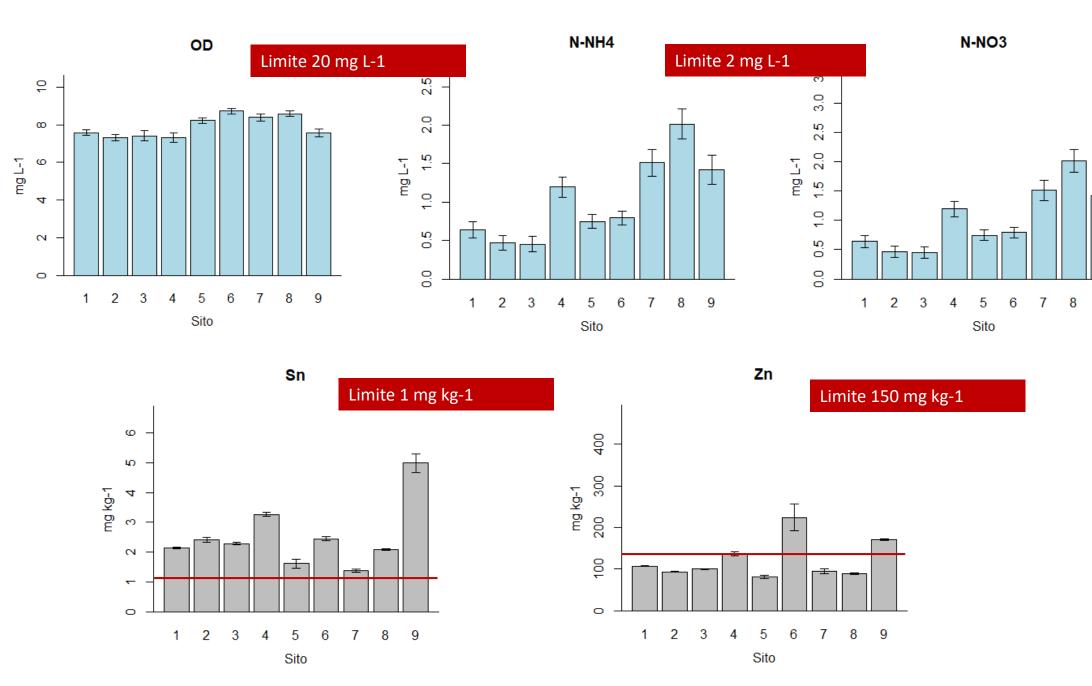
 $EI = \sum_{j=1}^{n} W_j \times TE$

dove
Ci valore assegnato ad un range
per ogni parametro di ogni
campione
pi peso relativo assegnato al

dove

Na, Ca, Mg sono le concentrazioni degli stessi elementi dove

W_j valore di correlazione con la prima componente principale risultante dall'analisi delle componenti principali del parametro considerato *TE* valore medio rilevato per i parametri TOC, TN e P


(Liu et al. 2019; Primpas et al. 2010)

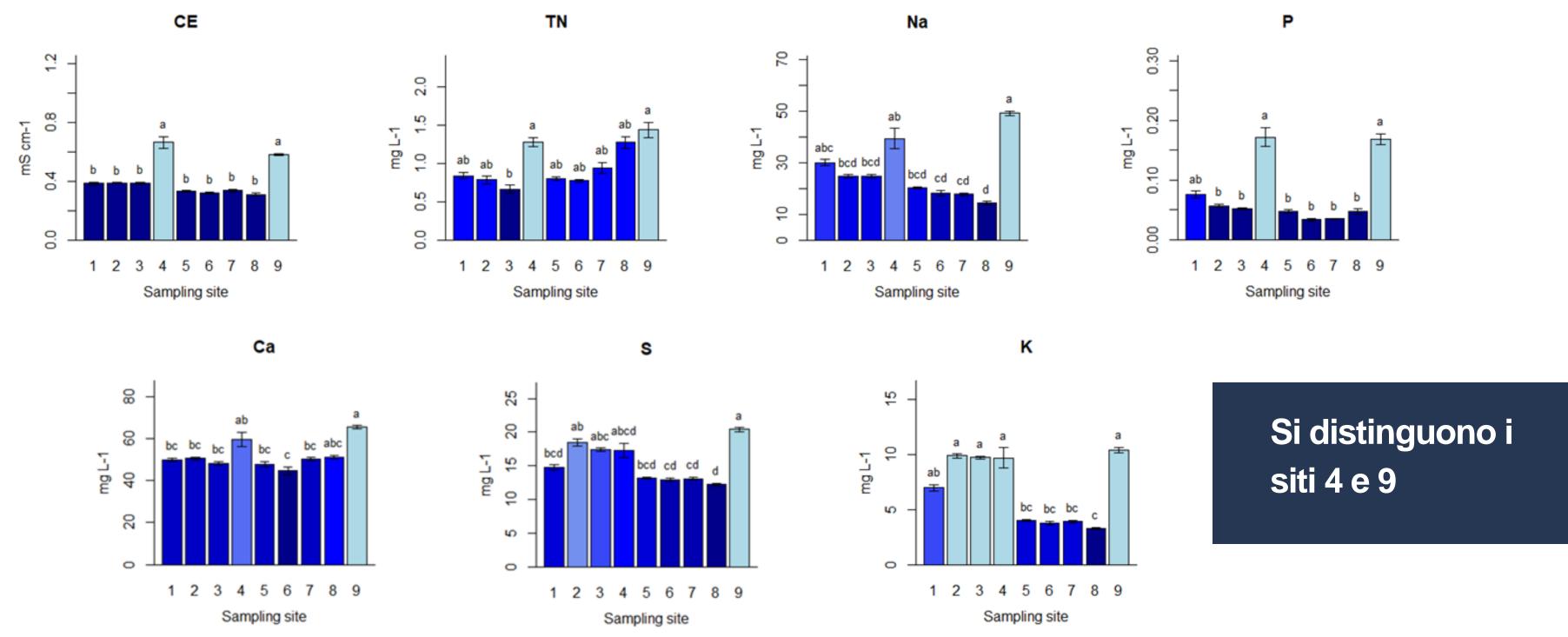
(Pesce and Wunderling 2000)

(Richards 1954)

parametro

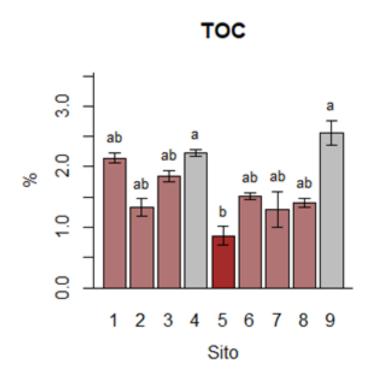
Risultati

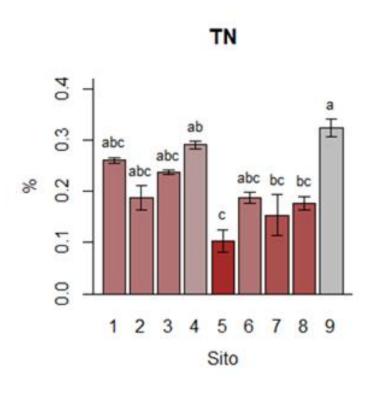
Limiti di legge rispettati per tutti i parametri delle acque

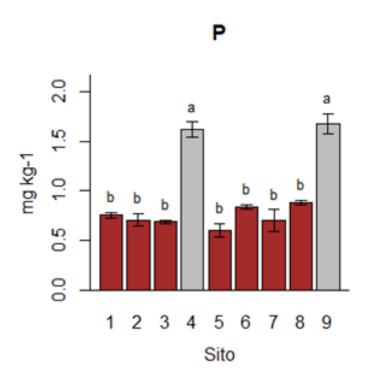

Superamento soglie per Zn e Sn in alcuni campioni di sedimento

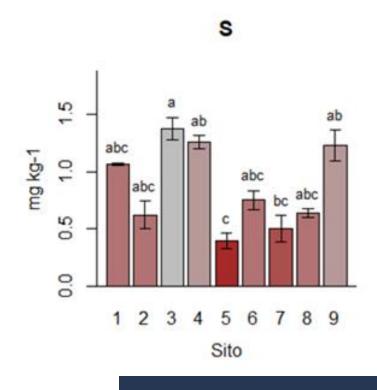
> D.lgs 152/99 > D.lgs 31/2001

> D.lgs 185/2003


> D.lgs 152/2006


> Acque



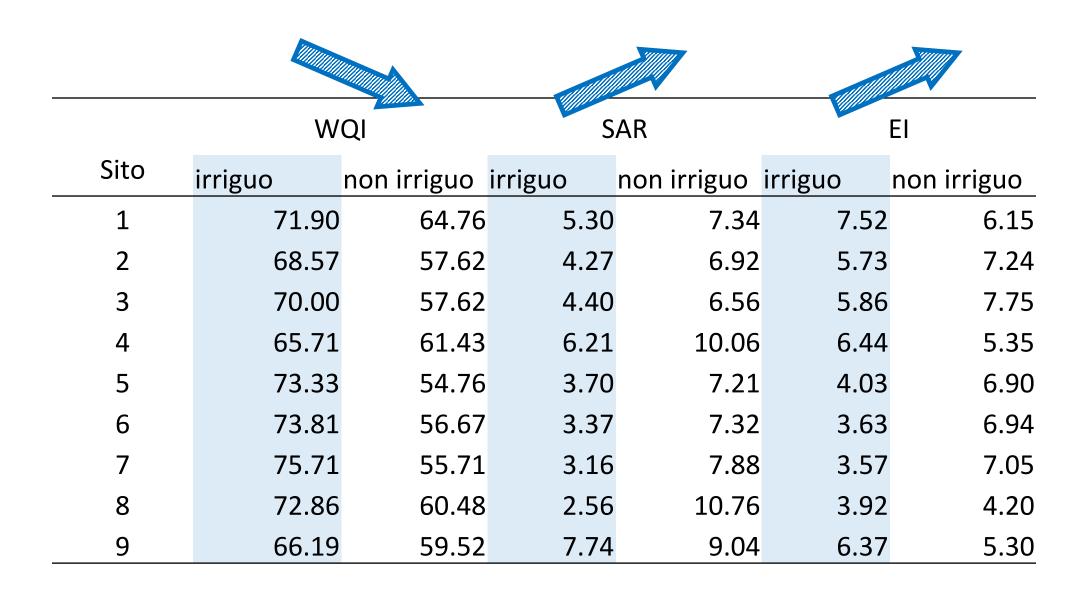

Soil Conservation and environmental protection (Imola, Italy)
September 6-10, 2021

> Sedimenti

Si distinguono i siti 4 e 9

> Indici di qualità

		WQI		SAR		EI	
Sito	irr	iguo	non irriguo	irriguo	non irriguo	irriguo	non irriguo
1		71.90	64.76	5.30	7.34	7.52	6.15
2		68.57	57.62	4.27	6.92	5.73	7.24
3		70.00	57.62	4.40	6.56	5.86	7.75
4		65.71	61.43	6.21	10.06	6.44	5.35
5	•	73.33	54.76	3.70	7.21	4.03	6.90
6		73.81	56.67	3.37	7.32	3.63	6.94
7		75.71	55.71	3.16	7.88	3.57	7.05
8		72.86	60.48	2.56	10.76	3.92	4.20
9		66.19	59.52	7.74	9.04	6.37	5.30
			_		_		_


Confermata distinzione siti 4 e 9

> Altre osservazioni

	WQI		SAR		EI	
Sito	irriguo	non irriguo	irriguo	non irriguo	irriguo	non irriguo
1	71.90	64.76	5.30	7.34	7.52	6.15
2	68.57	57.62	4.27	6.92	5.73	7.24
3	70.00	57.62	4.40	6.56	5.86	7.75
4	65.71	61.43	6.21	10.06	6.44	5.35
5	73.33	54.76	3.70	7.21	4.03	6.90
6	73.81	56.67	3.37	7.32	3.63	6.94
7	75.71	55.71	3.16	7.88	3.57	7.05
8	72.86	60.48	2.56	10.76	3.92	4.20
9	66.19	59.52	7.74	9.04	6.37	5.30

Si distinguono i siti 5, 6, 7, 8

> Altre osservazioni

Peggioramento qualità dell'acqua nel periodo non irriguo

> Altre osservazioni

	WQI		S	SAR		EI	
Sito	irriguo	non irriguo i	rriguo	non irriguo	irriguo r	non irriguo	
1	71.90	64.76	5.30	7.34	7.52	6.15	
2	68.57	57.62	4.27	6.92	5.73	7.24	
3	70.00	57.62	4.40	6.56	5.86	7.75	
4	65.71	61.43	6.21	10.06	6.44	5.35	
5	73.33	54.76	3.70	7.21	4.03	6.90	
6	73.81	56.67	3.37	7.32	3.63	6.94	
7	75.71	55.71	3.16	7.88	3.57	7.05	
8	72.86	60.48	2.56	10.76	3.92	4.20	
9	66.19	59.52	7.74	9.04	6.37	5.30	

Conclusioni

SITI 4 E 9 PEGGIORE QUALITA' DELLE ACQUE

- > Canali di grandi portate, collettori di tutta l'area
- > Risalita acque saline e salmastre
- > Richiesta maggiore attenzione per interventi del progetto Life

SITI 5, 6, 7, 8 MIGLIORE QUALITA' DELLE ACQUE

> Influenza caratteristiche geomorfologiche dei canali

RIDUZIONE FLUSSO D'ACQUA INFLUENZA NEGATIVAMENTE LA QUALITA'

> Investire in progetti di ricerca per gestione dei sedimenti

Grazie per l'attenzione

